SIMPLE EIGENVALUES FOR THE LAPLACE OPERATOR IN A DOMAIN WITH A SMALL HOLE. Serhii Gryshchuk¹ & Massimo Lanza de Cristoforis²

¹Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev

gry shchuk@imath.kiev.ua,

²Dipartimento di Matematica, Università degli Studi di Padova

mldc@math.unipd.it

Let \mathbb{I}^{o} be a bounded open domain of \mathbb{R}^{n} . Let $\nu_{\mathbb{I}^{o}}$ denote the outward unit normal to $\partial \mathbb{I}^{o}$. We assume that the Steklov problem $\Delta u = 0$ in \mathbb{I}^{o} , $\frac{\partial u}{\partial \nu_{\mathbb{I}^{o}}} = \lambda u$ on $\partial \mathbb{I}^{o}$ has a simple eigenvalue $\tilde{\lambda}$. Then we consider an annular domain $\mathbb{A}(\epsilon)$ obtained by removing from \mathbb{I}^{o} a small cavity of size $\epsilon > 0$, and we show that under proper assumptions there exists a real valued and real analytic function $\hat{\lambda}(\cdot, \cdot)$ defined in an open neighborhood of (0, 0) in \mathbb{R}^{2} and such that $\hat{\lambda}(\epsilon, \delta_{2,n} \epsilon \log \epsilon)$ is an eigenvalue for the Steklov problem $\Delta u = 0$ in $\mathbb{A}(\epsilon)$, $\frac{\partial u}{\partial \nu_{\mathbb{A}(\epsilon)}} = \lambda u$ on $\partial \mathbb{A}(\epsilon)$ for all $\epsilon > 0$ small enough, and such that $\hat{\lambda}(0, 0) = \tilde{\lambda}$. Here $\nu_{\mathbb{A}(\epsilon)}$ denotes the outward unit normal to $\partial \mathbb{A}(\epsilon)$, and $\delta_{2,2} \equiv 1$ and $\delta_{2,n} \equiv 0$ if $n \geq 3$. Then related statements have been proved for corresponding eigenfunctions.

The first author is partially supported by the National project of the Ministry of Education and Science of Ukraine № 0112U000374.